The Physics and Mathematics of MRI

Price: $30.98 $21.77 (Save $9.21)
Add to Wishlist

Author: Richard Ansorge;
Language: English
Publication Date: 07/2021
ISBN: 9787560395197
Publisher: Harbin Institute of Technology Press
About the Author
Richard Ansorge, a retired senior lecturer at the Cavendish Laboratory Cambridge and a former fellow and tutor of Fitzwilliam College Cambridge. He has extensive experience of experimental high energy physics, including significant contributions to the CERN UA5 experiment on the proton-antiproton collider in the 1980s. More recently he has collaborated with research groups on the Cambridge Biomedical campus in several areas including improving 3D medical imaging methods including MRI and PET. He is author of more than 100 scientific publications in these fields. He is particularly interested in applying computers for processing data from complex instrumentation. This has applications which are equally relevant in both high energy physics and medical imaging. He wrote his first computer program in 1964 for EDSAC2 and has been coding ever since. Much more recently he has developed code for 3D medical image registration using GPUs which are probably 10(10) times more powerful than EDSAC.
Martin Graves, a Consultant Clinical Scientist and lead of the Cambridge University Hospitals MR Physics group. He also holds an Affiliated Lecturer position with the University of Cambridge Clinical School. He is a Fellow of the Institute of Physics and Engineering in Medicine (IPEM), a Fellow of the Higher Education Academy (HEA), member of the Institute of Engineering and Technology (IET) and is an Honorary Member of the Royal College of Radiologists (RCR), He has served on various national and international committees including the British Institute of Radiology (BIR), the International Society of Magnetic Resonance in Medicine (ISMRM) and the European Society of Magnetic Resonance in Medicine and Biology (ESMRMB). He is a member of the editorial board of European Radiology.
Table of Contents
Symbols and Acronyms
Author biographies

1 The basics
1.1 A brief history of MRI
1.1.1 Spin and magnetic moments
1.1.2 NMR
1.1.3 MRI
1.1.4 Superconductivity
1.2 Proton spin
1.2.1 Precession
1.3 The Bloch equations
1.4 Signal generation
1.4.1 Reversing T2* effects-spin-echo
1.4.2 T1 Sensitivity-inversion recovery
1.4.3 Image contrast
1.5 Spatial encoding using magnetic field gradients
1.5.1 Lauterbur's tomographic method
1.5.2 Gradients and k-space
1.6 Spatialimage formation
1.6.1 Pulse sequences
1.6.2 Slice select
1.6.3 Phase encode
1.6.4 Frequency encode
1.6.5 Rewind and repeat
1.7 Conclusion

2 Magnetic field generation
2.1 Designing the main magnet
2.1.1 Magnetic field of circular coil
2.1.2 Combining coils
2.1.3 Off-axis fields
2.2 Designing gradient coils
2.2.1 Axial gradients
2.2.2 Transverse gradients
2.3 Practical issues
2.3.1 Main magnet
2.3.2 Keeping cool
2.3.3 Gradients
2.3.4 Pre-emphasis
2.3.5 Shielding and shimming
2.3.6 Safety

3 Radio frequency transmission and reception
4 Pulse sequences and images
5 Applications
6 Conclusion

Sample Pages Preview
Sample pages of The Physics and Mathematics of MRI (ISBN:9787560395197)
Sample pages of The Physics and Mathematics of MRI (ISBN:9787560395197)
Sample pages of The Physics and Mathematics of MRI (ISBN:9787560395197)
Sample pages of The Physics and Mathematics of MRI (ISBN:9787560395197)
The Physics and Mathematics of MRI