FEEDBACK

#### Transportation Systems Analysis and Modeling

Price: \$10.90 \$7.66 (Save \$3.24)

Part A Transportation Systems Analysis and Modeling Process 1
Chapter 1 Introduction to Transportation Systems 1
1.1 Definitions 1
1.1.1 Preliminary Concepts of Transportation Systems 1
1.1.2 Components of Transportation Systems 2
1.1.3 Relationship Between Transportation Systems and Activity Systems 5
1.2 Transportation System Identification 6
1.2.1 Relevant Spatial Dimensions 6
1.2.2 Relevant Temporal Dimensions 10
1.2.3 Relevant Components of Travel Demand 14
1.3 Macroscopic Measures of a Traffic Stream 17
1.3.1 Fundamental Parameters of Traffic Flow 17
1.3.2 Derived Characteristics 21
1.3.3 Time-space diagram 23
1.3.4 Fundamental Relationship 25
Chapter 2 Transportation Systems Analysis Framework 29
2.1 Background of the Current Transportation Environment Changing 29
2.2 Basic Premise of a Transportation System 29
2.3 Interrelationship of Transportation and Activity System 30
2.4 Intervening Transportation/Activity/Flow (TAF) System 31
2.5 Prediction of Transportation Flows 33
Chapter 3 Transportation Systems Mathematical Modeling Fundamentals 35
3.1 The Function of Mathematical Modeling 35
3.2 General Assumption for Transportation Systems Modeling 36
3.2.1 Physical and Functional Delineation Assumption 36
3.2.2 Spatial Discretization Assumption(Zoning) 36
3.2.3 Identification of Relevant Transportation Services 36
3.2.4 Identification of Relevant Model Periods 36
3.2.5 Withinperiod Variability Assumption 36
3.3 Mathematical Models Family Structure for Transportation System 37
3.4 Supply Models Simulating Transportation Systems 37
3.5 Demand Models Simulating Transportation Systems and Activity 38
3.6 Network Demand-Supply Interaction Modeling 38
Part B Transportation Supply Analysis and Modeling 42
Chapter 4 Macroscopic Traffic Stream Modeling 42
4.1 Introduction 42
4.2 Greenshield’s Macroscopic Stream Model 43
4.3 Calibration of Greenshield’s Model 45
4.4 Other Macroscopic Stream Models 46
4.4.1 Greenberg’s Logarithmic Model 46
4.4.2 Underwood’s exponential model 46
4.4.3 Pipes’ Generalized Model 47
4.4.4 Multi-Regime Models 47
4.5 Shock Waves 48
4.6 Macroscopic Flow Models 50
Chapter 5 Microscopic Traffic Flow Modeling 52
5.1 Introduction 52
5.2 Notation for Car Following Modeling 52
5.3 Car Following Models 53
5.3.1 Pipe’s Model 53
5.3.2 Forbes’ Model 54
5.3.3 General Motors’ Model 54
5.3.4 Optimal Velocity Model 54
5.4 General Motor’s Car Following Model 55
5.4.1 Basic Philosophy 55
5.5 Simulation Models 57
5.5.1 Applications of Simulation 57
5.5.2 Need for Simulation Models 58
5.5.3 Classification of Simulation Model 58
Chapter 6 Trip Generation Analysis and Modeling 59
6.1 Basic concepts 59
6.2 Trip Generation Analysis Methods 59
6.3 Regression Analysis Method 62
6.4 Cross-Classification Method 68
6.5 Model Stability over Time 73
6.6 Summary 74
Part C Trip-based Demand Analysis and Modeling 77
Chapter 7 Trip Distribution Analysis and Modeling 77
7.1 Problem Definition 77
7.2 Gravity Models 80
7.3 Calibration of Doubly Constrained Gravity Models 87
7.4 Summary 95
Chapter 8 Modal Split Analysis and Modeling 98
8.1 Introduction 98
8.2 Factors Influencing Mode Choices 99
8.3 Aggregate Mode Choice Models 99
8.4 Disaggregate Choice Models 103
8.4.1 Modeling Framework: the Utility Theory 104
8.4.2 Logit Model 109
8.4.3 Calibration of Logit Models 112
8.5 Disaggregate Choice Models vs Traditional Aggregate Models 124
8.6 Summary 126
Chapter 9 Network Traffic Assignment Analysis and Modeling 129
9.1 Requirements for Network Traffic Assignment 129